
MTH 310 HW 9 Solutions

April 8, 2016

Section 4.5, Problem 12

Prove that if c ∈ F and f(x) ∈ F[x] and f(x+ c) irreducible, then so is f(x).
Answer. We prove by contrapositive. Assume f is reducible. Then f(x) = p(x)q(x) for
some p(x), q(x) ∈ F[x] with positive degree. Then f(x + c) = p(x + c)q(x + c), and since
deg(p(x)) = deg(p(x+c)) and deg(q(x)) = deg(q(x+c)), f(x+c) is a product of polynomials
of positive degree and thus is reducible.

Section 4.6, Problem 8

If a+ bi ∈ C is a root of p(x) = x3 − 3x2 + 2ix+ i− 1, must a− bi also be?
Answer. No. One way to show this is to note that i is a root but −i isn’t.

But a more fun way (which might generalize a little better) goes as follows. Assume that
if p(a + bi) = 0 then p(a − bi) = 0. We know by the fundamental theorem of algebra
that there are exactly three roots of this polynomial. We claim that p has a real root. To
show this, denote one of the roots as r1 = a+ bi (guaranteed to exist by the fundamental
theorem of algebra). If r1 is real, we have shown what we are trying to show, so assume
it isn’t. Then r2 = a− bi must also be a root by our above assumption. But by corollary
4.28 (version 3), there is a third root of p–call it r3 = l + qi. But then l − qi must also be
a root. But l − qi it can’t be r1 or r2 since that would mean r3 was r2 or r1 respectively.
Thus r3 = p− qi so q = 0 and p has a real root l.

Thus 0 = p(l) = l3 − 3l2 − 1 + i(2l + 1), so 2l + 1 = 0 and thus l = −1
2 . But p(l) 6= 0 so

there are no real roots.
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1 Section 5.1, Problem 3

List the congruence classes in Z[x]\(x3 + x+ 1).
Answer. Any congruence class has an element of degree 2 or less and if p(x), q(x) ∈ Z2[x]
with [p(x)] = [q(x)] then p(x) = q(x) so the classes are [0], [1], [x], [x+1], [x2], [x2+1], [x2+
x], [x2 + x+ 1].

2


