MTH 310 HW 9 Solutions

April 8, 2016

Section 4.5, Problem 12

Prove that if $c \in \mathbb{F}$ and $f(x) \in \mathbb{F}[x]$ and $f(x+c)$ irreducible, then so is $f(x)$.
Answer. We prove by contrapositive. Assume f is reducible. Then $f(x)=p(x) q(x)$ for some $p(x), q(x) \in \mathbb{F}[x]$ with positive degree. Then $f(x+c)=p(x+c) q(x+c)$, and since $\operatorname{deg}(p(x))=\operatorname{deg}(p(x+c))$ and $\operatorname{deg}(q(x))=\operatorname{deg}(q(x+c)), f(x+c)$ is a product of polynomials of positive degree and thus is reducible.

Section 4.6, Problem 8

If $a+b i \in \mathbb{C}$ is a root of $p(x)=x^{3}-3 x^{2}+2 i x+i-1$, must $a-b i$ also be?
Answer. No. One way to show this is to note that i is a root but $-i$ isn't.
But a more fun way (which might generalize a little better) goes as follows. Assume that if $p(a+b i)=0$ then $p(a-b i)=0$. We know by the fundamental theorem of algebra that there are exactly three roots of this polynomial. We claim that p has a real root. To show this, denote one of the roots as $r_{1}=a+b i$ (guaranteed to exist by the fundamental theorem of algebra). If r_{1} is real, we have shown what we are trying to show, so assume it isn't. Then $r_{2}=a-b i$ must also be a root by our above assumption. But by corollary 4.28 (version 3), there is a third root of p-call it $r_{3}=l+q i$. But then $l-q i$ must also be a root. But $l-q i$ it can't be r_{1} or r_{2} since that would mean r_{3} was r_{2} or r_{1} respectively. Thus $r_{3}=p-q i$ so $q=0$ and p has a real root l.

Thus $0=p(l)=l^{3}-3 l^{2}-1+i(2 l+1)$, so $2 l+1=0$ and thus $l=-\frac{1}{2}$. But $p(l) \neq 0$ so there are no real roots.

1 Section 5.1, Problem 3

List the congruence classes in $\mathbb{Z}[x] \backslash\left(x^{3}+x+1\right)$.
Answer. Any congruence class has an element of degree 2 or less and if $p(x), q(x) \in \mathbb{Z}_{2}[x]$ with $[p(x)]=[q(x)]$ then $p(x)=q(x)$ so the classes are $[0],[1],[x],[x+1],\left[x^{2}\right],\left[x^{2}+1\right],\left[x^{2}+\right.$ $x],\left[x^{2}+x+1\right]$.

